Exercise 33

Find the limit or show that it does not exist.

$$
\lim _{x \rightarrow-\infty}\left(x^{2}+2 x^{7}\right)
$$

Solution

Make the substitution, $u=-x$, so that as $x \rightarrow-\infty, u \rightarrow \infty$. Then factor the highest power of u in order to turn this sum into a product with an inverse power of u.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(x^{2}+2 x^{7}\right) & =\lim _{u \rightarrow \infty}\left[(-u)^{2}+2(-u)^{7}\right] \\
& =\lim _{u \rightarrow \infty}\left[u^{2}+2\left(-u^{7}\right)\right] \\
& =\lim _{u \rightarrow \infty}\left(u^{2}-2 u^{7}\right) \\
& =\lim _{u \rightarrow \infty}\left[u^{7}\left(\frac{1}{u^{5}}-2\right)\right] \\
& =\left(\lim _{u \rightarrow \infty} u^{7}\right)\left[\lim _{u \rightarrow \infty}\left(\frac{1}{u^{5}}-2\right)\right] \\
& =\left(\lim _{u \rightarrow \infty} u^{7}\right)\left(\lim _{u \rightarrow \infty} \frac{1}{u^{5}}-\lim _{u \rightarrow \infty} 2\right) \\
& =\left(\lim _{u \rightarrow \infty} u^{7}\right)(0-2) \\
& =(\infty)(-2) \\
& =-\infty
\end{aligned}
$$

